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Abstract—The linear theory of heat and mass transfer is considered. Some general theorems are formulated,

i.e. a reciprocity theorem and a variational theorem (no use is made of the Laplace transform). The

functional derived herein gives all the governing equations, including the boundary and initial conditions,
as Euler equations.

INTRODUCTION

THE INTERRELATION between heat and mass transfer
in porous bodies was first established by Luikov [1,
2] who proposed a two-term relationship for non-
isothermal mass diffusion and also determined exper-
imentally the coefficients of diffusion and thermo-
diffusion for a number of moist materials. Later
[3, 4] via the use of thermodynamics of irreversible
processes, he defined a coupled system of partial
differential equations for heat and mass transfer
potential distributions in porous bodies. Applications
in this and other fields such as drying theory, building
thermo-physics and heat and moisture migration in
soils can be found in ref. [5]. Independently, Krischer
[6] and De Vries [7] also proposed systems of differ-
ential equations of the Luikov type for temperature
and moisture content distributions in porous bodies.

The analytical solution of these types of equations
presents great mathematical difficulties, and conse-
quently solutions are given for only the simplest of
geometrical configurations and boundary conditions
[4]. In any realistic problem resort must be made to
numerical techniques. These have usually been based
on some general theorems, i.e. a reciprocity theorem
and a variational theorem.

The variational formulation based on local poten-
tial to simplified non-linear heat and mass transfer
equations was proposed by Kumar [8]. Glazunov [9]
proved that for the non-linear transport problem vari-
ational classic type theorems do not exist. Some non-
classic type principles for solution of the non-linear
interrelated heat and mass transfer problems are avail-
able in refs. [10-12].

In this paper Luikov’s linear theory of heat and
mass transfer is considered and the reciprocity
theorem and the variational theorem are established.
The procedure shown herein does not require any
transformation of the field equations and includes
the boundary and initial conditions.
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TRANSFER EQUATIONS

The governing equations in the linear theory of heat
and mass transfer (Luikov’s equations) are [3-5]

T
o _ <a+8m"'6>AT+ T A
ot ¢ c
ow
W=am(AW+5AT), xeB, t>0 (1)

where T denotes the temperature, W the mass content,
a the thermal diffusivity, a,, the mass diffusivity, ¢ the
phase-change criterion (i.e. ¢ = 1 all vapour, £ = 0 all
liquid), r the latent heat of evaporation, ¢ the specific
heat, § the thermogradient coefficient, x the spatial
position, ¢ the time, and A the Laplace operator.

To the above field equations one adjoining the
boundary conditions

oT ow  _oT .
q= —A% — era,p (5’7 + 5$> = §(x, 1),
x€0B,t>0 (2)

ow oT -
j=—a.p (& + 5——> =j(x,t), x€0B;,t>0
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©)
T=T(x1), x€dByt>0 4
W= W(x,1), x€dBy,t>0 o)
and the initial conditions
T=Tyx), xeB,t=0 (©)
W=Wyx), xeB,t=0 )

where 4 is the thermal conductivity, p the density of
a perfectly dry body, n the unit outward normal, d/0n
the normal derivative ; 7' denotes the prescribed tem-
perature on 0B, W the moisture content on dB,,, g
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NOMENCLATURE
a thermal diffusivity [m?s~'] e phase-change criterion
Ay mass diffusivity [m?s~'] i thermal conductivity [Wm~'K™']
A matrix operator p density [kgm™3].
B body
0B boundary Subscripts and superscripts
c specific heat [Jkg='K~!] a, B system
E space . surface
f functional ! dual
f vector 0 initial
J mass flux [kgm?s™'] E space
n unit outward normal T,q heat
q heat flux [Wm 2] T transposition
r heat of phase change [Jkg™!] W,j mass.
t time [s]
T temperature [K) Operators
u vector Vv gradient
W  moisture content [kgkg~'] A Laplacian
x spatial position [m]. * convolution
scalar product
Greek symbols {+,*> bilinear form.
3 thermogradient coefficient [K ']

the heat flux on 9B, j the mass flux on 8B;; T, and
W, are prescribed initial values; B = BuU dB.

The set of basic equations (1)—(7) can be put into
the operator form

Au+f=0, A:E->E ucEfeE’ (8)

where
w=[T, W, T,W; T, W,q,j1" )
£f=1[0,0, —dcpTo, —erpWy; 84, erf, — 6T, —erW]*
(10

and A is a linear matrix (8 x 8) operator the non-zero
elements of which are given by

i )
A =5cp<5—- <a+8r(z )A)

Ay = —era,pA =4y

0
A,y =erp (E - a,,,A>

Ay3 = dcp
Aqq =cerp
As;=—0=—A;;
A68 = —§g¥ = "“Ags.

(11

Here E denotes the space of ordered arrays of the
form given in equation (9). The dual space of E is
denoted by E’.

RECIPROCITY THEOREM

Alternatively, one may consider a problem, equi-
valent to equation (8) given by [13]

{An, vy, =d, v, veE (12)

where (-, > denotes the bilinear form on Ex E’ rep-
resented by the integrals

& vde= L (fr*v+ %0+ f3(x,0)0,
+f4(x,0)v4)dV+J (fs*vs)dS+J (fs*v6)dS
o8, o8,

+Ls (f7*U7)dS+L (fa*vs)dS (13)

where

v=1[v,,...,05]".

f=[fl,---afs]T,

In equation (13) f *v denotes the convolution of f
and v [14]

S ro(x, 1) = J:f(x, t—1)v(x, 1) dr. 14

The capillary-porous body is considered subject to
two different systems of heat and mass loadings f* and
two corresponding configurations u*, where o« = 1, 2.

Theorem 1. If a capillary-porous body is subjected
to two different systems of heat and mass loadings
f*, then between the corresponding configurations u*

there is the following relation :
fhu?)p =<u' ) (15)

where
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£ w0y = {(«»5cpT’T€~arpW°‘W%)dV

o8

+ f BT« ds + ( (erWw=» ) ds
Jéos, JoB;

— r (8" = ’f’ﬁ)(js —
J@Br JBBW

asﬁ= 1’29“%3'

Proof. On the basis of relation (12) one has

AN

A, o yp =0 ), af=12a#p (1

From equations (9)—(11), (13) and (17) (using Green’s
theoremn and properties of the convolution),

obtains

one

"7 /A

An',u?d, = pJ (6c (i (T'*T?)
o or
+ (a+8’“m5)vru VT2>+era 5(VT‘* VW2
1 2 a H 2
+VW - VT?) +er é;(W *W*)
+amVW'*-VW2»dV+‘. O@*+T'
i JiBr

+q'+T?))dS + f (er(G*« Wi+ x W) dS
o8,
(18)
which implies

CAu',u*)p = CAw’,u' )p. (19)

From equations (17) and (19) one obtains relation
(15). This completes the proof of the theorem.

VARIATIONAL THEOREM

The necessary and sufficient condition that there
exists a variational functional corresponding to the
operator, equation (8), is that equation (19) holds for
each u',u’eE, ie. the bilinear form must be sym-
metric in u' and u? {15].

The corresponding variational functional is given
by

(@) = A, udp +<{f, s

A demonstration of this important result can be found
in ref. [16].

From equations (9)—(11), (13) an
Green’s theorem and the property of the ¢
one obtains

(20)

r/ /a
F@ =S W) =p | {doc(5T*T)

B
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\ot /
W) R P
—eroW}}0V+ (aqu)uo-f-‘} {erj» W)dS
28, 28,

r r
+L (5(T—T’)*q)dS+Ja (er(W—W) » j) dS.
21

Thus, f(u) in equation (21) is the functional associ-
ated with Au+f in equation (8) ; that is, the solution
of the set of equations (1)-(7) is a critical point (a
point ue E is called a critical point of the functional
_] \u) if gi‘au_/ = U} of f This is pi‘O'v‘c‘:u in the fol-
lowing theorem.

Theorem 2. Let ueE, and let f(u) have a linear
Gateaux differential at every u, where f is the func-

tional defined in equation (21). Then
3f (u,w) =0

if and only if u is a solution of equation (8).
Proof. Let u’ be an arbitrary element in £. Then the
Gateaux differential of f is

22)

T
of (w,u") = {grad f(m),w >p = j‘ (56 ((?3:

- (a + emmé)AT— s—PE-AW)* T +er (GW
\ c ot
—a,,.,(AW+5AT))* W'+ 8c(TO0) = T,) T’

+er(W(0) — Wo) w)av + JCB @G- *T)dS

~

fad
+J (sr(f—j)*W')dS-f—J G(T—T)*q)ds
o8, o5,

+j (er(W—W)+;7)dS = (Au+£,u' >, (23)
58,

One first proves sufficiency. Suppose that ue E is
a solution of equations (1}-(7). Then equation (23}
becomes

(Au+f,u >, = {grad f(w),w ), =0

which implies equation (22).
To prove the necessity, assume that equation (22)
holds. In view of Lemmas 1-4 [17] one can see that

(24)

grad f(u) = Au+-f=0. (25)

This completes the proof of the theorem.
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CONCLUSIONS

The results obtained in this paper can make a base

to construct the numerical solutions of initial-bound-
ary value problems of linear heat and mass transfer.
The variational formulation for the finite element
method [18] and the reciprocity equation for the
boundary element method [19]. The fundamental
solutions to this equation, corresponding to a con-
centrated heat and mass source, can be found in ref.
[20].
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QUELQUES THEOREMES DANS LA THEORIE DE LUIKOV SUR LE TRANSFERT DE
CHALEUR ET DE MASSE DANS LES CORPS MICROPOREUX

Résumé-—On considére la théorie linéaire du transfert de chaleur et de masse. Quelques théorémes généraux

sont formulés tels que, par exemple, un théoréme de réciprocité et un théoréme variationnel (il n’est

pas fait usage de la transformation de Laplace). La fonctionnelle utilisée donne toutes les équations
fondamentales qui incluent les conditions aux limites et initiales, comme les équations d’Euler.

EINIGE THEOREME ZUR LUIKOV'SCHEN THEORIE DES WARME- UND
STOFFTRANSPORTS IN KAPILLAR-POROSEN KORPERN

Zusammenfassung—Die lineare Theorie des Wirme- und Stofftransports wird betrachtet. Einige all-

gemeingiiltige Theoreme werden formuliert, z. B. ein Reziprozititstheorem und ein Variationstheorem

(die Laplace-Transformation wird nicht verwendet). Das hier hergeleitete Funktional ergibt alle mafige-
benden Gleichungen sowie die Rand- und Anfangsbedingungen und die Euler-Gleichungen.

HECKOJIBKO TEOPEM TEOPHUH TEIJIO- U MACCOIIEPEHOCA JIbIKOBA B
KATTUWLUISPHO-TTIOPUCTBIX TEJAX

Amsoraums—PaccMaTpHBaeTCa JIMHEHHAs TeopHs TeIwio- M MacconepeHoca. CHOpMyIMpPOBaHO HECKO-

JbKO OOLIKX TEOPEeM, 3 HMEHHO, TEOPEeMa B3AHMHOCTH M BapHMallMOHHas TeopeMa (6e3 MCmoJb30BaHHSA

npeobpa3zosanus Jlamwiaca). BoienenHslit QyHKUMOHAN HaeT BO3MOXHOCTH MOJYYHTb BCE OCHOBHBIC
ypaBHEHHS THIA ypaBHeHui Diinepa ¢ rPaHAYHLIME M HA4AJTbHBIMH YCIIOBHAMH.



